

OK Tigrod 316L

Bare corrosion resisting chromium-nickel-molybdenium welding rods for welding of austenitic stainless alloys of 18% Cr - 8% Ni and 18% Cr - 10% Ni - 3% Motypes. OK Tigrod 316L has a good general corrosion resistance, particularly against corrosion in acid and chlorinated environments. The alloy has a low carbon content which makes it particularly recommended were there is a risk of intergranular corrosion. The alloy is widely used in the chemical and food processing industries as well as in ship building and various types of architectual structures.

Specifications	
Classifications	EN ISO 14343-A : W 19 12 3 L SFA/AWS A5.9 : ER316L Werkstoffnummer : ~1.4430
Approvals	ABS: 1.6-3.2mm BV: 1.6-3.2mm CE: EN 13479 CWB: ER316L DNV: 1.0-4.0mm RINA: 316L BT UKCA: EN 13479 VdTÜV: 1.0-4.0mm

Approvals are based on factory location. Please contact ESAB for more information.

Alloy Type	Austenitic (with approx. 10 % ferrite) 19% Cr - 12% Ni - 3% Mo - Low C
Shielding Gas	I1 (EN ISO 14175)

Typical Tensile Properties							
Condition	Yield Strength	Tensile Strength	Elongation				
As Welded	470 MPa	600 MPa	32 %				

Typical Charpy V-Notch Properties							
Condition	Testing Temperature	Impact Value					
As Welded	20 °C	175 J					
As Welded	-60 °C	130 J					
As Welded	-110 °C	120 J					
As Welded	-196 °C	75 J					

Typical Weld Metal Analysis %									
С	Mn	Si	S	Р	Ni	Cr	Мо	Cu	N
0.01	1.8	0.4	0.01	0.02	12	19	2.6	0.1	0.05

Typical Weld Metal Analysis %	
FN WRC-92	
7	

Typical Wire Composition %									
С	Mn	Si	S	Р	Ni	Cr	Мо	Cu	N
0.01	1.7	0.4	0.010	0.015	12.0	18.2	2.6	0.10	0.04

Typical Wire Composition %	
FN WRC-92	
7	